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Problem definition: 

The task we chose is to create a learner that can accurately predict who a person is based off of
the movements of their left and right eyes when tracking an object on a screen. Our goal is to 
create a learner that has a better accuracy than the winning learner of the EMVIC 2012 
competition, which was 39%. 

Dataset:

The dataset we’re using was provided by the EMVIC 2012 competition whose link can be found 
at the bottom of this page. The dataset consists of 978 samples taken from 37 different people. 
Each sample contains 8192 attributes which come from the left and right eyes’ x and y positions 
when gazing at a moving object on a computer screen during each testing session. The dataset 
is stored as a csv that we load into our python script. The script then splits each row in the 
following order: class, left x-dir for all tests, left y-dir for all tests, right x-dir for all tests, and right 
y-dir for each timestep during the test. Figure 1 below shows an example plot of one 
participant’s recorded eye movements.

Figure 1: This plot shows the recorded eye movements of one participant from the EMVIC dataset. This participant was labeled #31.

Testing:

To train our learner we are using the EMVIC 2012 training dataset found on kaggle along 
with 10 fold cross validation. Because the datasets are split into multiple trials of the 37 
participants, using 10 fold cross validation we will be able to train on data from all 37 of 
the participants, with about 10% of the data randomly selected for testing on each fold.

Results:



 
To begin, we obtained a benchmark accuracy using wekas ZeroR classification to find 
the lowest acceptable classification percent in order to judge the performance of our 
other learners. Using ZeroR we were able to get correct classification of 16.1043% of 
our testing data. 

We first attempted to classify the data using a neural network. This was our original 
method of training on the dataset and, as of the midpoint of the project, we were 
obtaining 15% accuracy on the testing set. This is worse than the ZeroR results, which 
signifies that our classifier didn’t actually do any classification. To try to increase our 
accuracy to be closer to that of the winner from the EMVIC competition we utilized the 
following methods: increasing the number of hidden layers in the neural network, 
varying the activation functions and number of nodes used in each layer of the neural 
net, and adding dropout to each layer.

When increasing the number of hidden layers from 1 to 3 with 8,5, and 3 nodes in each 
respective layer, the network’s accuracy went up by 5% giving a final training accuracy 
of 20%. This new accuracy is still well below that of the winning accuracy of the 
competition but much better than the original accuracy of the neural net. With each layer
that is added to the network the dimensionality of the network increases thereby 
enabling it to create a greater number of relationships between the data and the classes
compared to the smaller network. Although, considering the number of nodes in each 
layer and the size of the dataset, there is a worry that the network does not have 
enough memory to learn weights of all of the attributes, and only learns a small fraction. 
However, increasing the number of nodes in each layer worsened the performance of 
the classifier, so we decided to continue using the smaller network. 

When changing the activation functions of the input and hidden layers of the network to 
softmax or Sigmoid the difference in accuracy was imperceivable. There was however a
very slight increase of less than a percent when we changed the output layers activation
to softmax. 

With the addition of a dropout layer with value of .3 after the first hidden layer the 
accuracy increased from 20% to  around 24% and another layer with value of 0.1 after 
the second hidden layer allowed for an increase of almost 2% leaving use with a final 
classification accuracy of 25.92%.



 
Figure 2: This is the training and cross validation accuracies of the Neural Network. The faded red/ green shaded areas show the maximum positive and

negative variance of the data. The solid line is the median value.

As an experiment we also decided to pass the data through two tree based learners, 
decision trees and random forests. The decision tree generated by weka was used to 
see how the data gets classified within a tree structure. Using a decision tree without 
pruning we were able to get 36.503% of the validation set correctly classified. This 
result is within a very close range of the winning percentage for the EMVIC competition 
that we originally pulled the data from.  This percentage increased very marginally to 
36.65% when using the pruned model, which cut the decision tree size down from a 
size of 245 to 241. The random forest, which was generated with a seed value of 1 and 
a batch size of 100, by far gave the best classification accuracy at 60.88%. This 
classifier required very little modifications in order to get a vastly improved result. We 
think that the tree based learners can get vastly improved accuracy because, during eye
movement, if a person sees the same visual data during each test, their eye movement 
will be the same across the different testing sessions. Figure 3, below, shows a 
visualization of the decision tree generated by weka. 



Figure 3: This is the decision tree generated by weka. This shows what attributes are being considered to contain the most information about each 

person. A high res version of the image can be seen here.

In our final experiments we looked into using scikit-learn’s random forest and support 
vector machine capabilities. Scikit-learn’s library provides many parameters for both 
classification methods, and, since they were used as benchmarks on the original 
EMVIC competition, they were a good match for our dataset. Curiously, scikit-learn’s 
random forest performed better than weka’s, achieving an accuracy of 64.72% using 
10-fold cross-validation and default settings. By default, scikit’s random forest only 
considers a number of features equal to the square root of the total number of features 
for each split. In our case, this number is 90. By increasing this number to 15% of the 
total features (1228 features considered per split), we were able to increase the 
accuracy of this model to a final 65.537%. Increasing considered features beyond 15% 
both reduced accuracy and massively increased processing expense.

Scikit-learn’s support vector machine (SVM) supports different kernel functions. By 
default, SVM achieved 64.39% accuracy. Changing the kernel function to a second 
degree polynomial allowed the model to achieve 68.72% accuracy. Finally, by changing 
the SVM kernel function to a sigmoid profile, the classifier was able to achieve 65.602% 
accuracy.

From the results gathered we can come to the conclusion that the best learners out of 
those that were used to classify the dataset are the random forest and support vector 
machine. As stated before, we were able to get 65.537% and 68.72% accuracy from the
learners respectively, which is significantly higher than that of the neural network but, it 
is much higher than the winning accuracy of the competition. If we were to continue 
working on solving this problem I believe that we would continue to pursue SVM or tree 
based learners such as the Decision tree or random forest because they give vastly 
improved accuracy when compared to the neural network. Along with this, datasets for 
EMVIC 2014 competition do exist, though they are difficult to obtain. Getting this dataset
would provide a much larger dataset to work with, and likely boost accuracy for all 
learners.

Work Distribution: 

For the project the distribution of work is as follows. Lauren worked on creating the 
Decision Tree, and putting together the Neural network, and the website. Mike assisted 
in experimenting with various learners and editing documents. 

Links
https://www.kaggle.com/c/emvic/data 

https://drive.google.com/file/d/16i4-CZGF6QddwPSH4dfWpEQC3wvM6gV8/view?usp=sharing
https://www.kaggle.com/c/emvic/data



